stochastic definiteness - meaning and definition. What is stochastic definiteness
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is stochastic definiteness - definition

ASPECT OF THE RELATIONSHIP BETWEEN THEORY AND EXPERIMENTATION IN SOME CONTEXTS
Counter Factual Definiteness; Counter-Factual Definiteness; Counter-factual definiteness; Counter factual definiteness; Contrafactual definiteness; Counterfactual communication

Stochastic optimization         
Stochastic search; Stochastic optimisation
Stochastic optimization (SO) methods are optimization methods that generate and use random variables. For stochastic problems, the random variables appear in the formulation of the optimization problem itself, which involves random objective functions or random constraints.
Stochastic modelling (insurance)         
PROBABILITY MODELLING TOOL
Stochastic modeling; Stochastic modelling
"Stochastic" means being or having a random variable. A stochastic model is a tool for estimating probability distributions of potential outcomes by allowing for random variation in one or more inputs over time.
Stochastic process         
  • Wiener]] or [[Brownian motion]] process on the surface of a sphere. The Wiener process is widely considered the most studied and central stochastic process in probability theory.<ref name="doob1953stochasticP46to47"/><ref name="RogersWilliams2000page1"/><ref name="Steele2012page29"/>
  • red}}).
  • Mathematician [[Joseph Doob]] did early work on the theory of stochastic processes, making fundamental contributions, particularly in the theory of martingales.<ref name="Getoor2009"/><ref name="Snell2005"/> His book ''Stochastic Processes'' is considered highly influential in the field of probability theory.<ref name="Bingham2005"/>
  • [[Norbert Wiener]] gave the first mathematical proof of the existence of the Wiener process. This mathematical object had appeared previously in the work of [[Thorvald Thiele]], [[Louis Bachelier]], and [[Albert Einstein]].<ref name="JarrowProtter2004"/>
  • A single computer-simulated '''sample function''' or '''realization''', among other terms, of a three-dimensional Wiener or Brownian motion process for time 0 ≤ t ≤ 2. The index set of this stochastic process is the non-negative numbers, while its state space is three-dimensional Euclidean space.
MATHEMATICAL OBJECT USUALLY DEFINED AS A COLLECTION OF RANDOM VARIABLES
Random function; Theory of random functions; Stochastic processes; Random process; Stochastic transition function; Heterogeneous process; Stochastic effects; Stochastic Process; Random signal; Random system; Random processes; Stochastic model; Stochastic systems; Homogeneous process; Stochastic models; Kolmogorov extension; Stochastic system; Process (stochastic); Discrete-time stochastic process; Stochastic dynamics; Stochastic deaths; Stochastic processe; Stochastic Processes; Real-valued stochastic process; Version (probability theory)
In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner.

Wikipedia

Counterfactual definiteness

In quantum mechanics, counterfactual definiteness (CFD) is the ability to speak "meaningfully" of the definiteness of the results of measurements that have not been performed (i.e., the ability to assume the existence of objects, and properties of objects, even when they have not been measured). The term "counterfactual definiteness" is used in discussions of physics calculations, especially those related to the phenomenon called quantum entanglement and those related to the Bell inequalities. In such discussions "meaningfully" means the ability to treat these unmeasured results on an equal footing with measured results in statistical calculations. It is this (sometimes assumed but unstated) aspect of counterfactual definiteness that is of direct relevance to physics and mathematical models of physical systems and not philosophical concerns regarding the meaning of unmeasured results.

"Counterfactual" may appear in physics discussions as a noun. What is meant in this context is "a value that could have been measured but, for one reason or another, was not."